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Abstract: This study explores the potential of using low-computing-cost machine 

learning models for predicting Bending Loss in Photonic Crystal Fibers (PCFs). 

Algorithms for machine learning that utilise historical data and trends can be utilized to 

provide a potent tool for predicting Bending Loss. The bending loss data and the other 

associated parameters of the bent PCF were obtained using the Finite Element Method-

based modal solution technique (FEM). The PCF has 3 ring air-holes in the cladding with 

a pitch length () of 2.6m a wavelength () of 1.55m and a silica refractive index (n) 

of 1.445. The bending radius was varied from of 10000m to 230m and the calculations 

were done in the Transverse Electric (TE) mode. The Bending Loss Dataset was used to 

train and evaluate five different low-computing-cost regression Algorithms such as 

Linear Regression, Random Forest Regressor, Gradient Boosting Regressor, Support 

Vector Machine Regressor, and Gaussian Process Regression are utilized. The Linear 

Regression model was found to be the most accurate and reliable predictor of Bending 

Loss in Photonic Crystal Fibres (PCFs) achieving a Mean Square Error (MSE) of 0.0002 

and an R-squared (R2) score of 0.9999. The findings of this work show how machine 

learning models can be used to forecast crucial PCF parameters, which could progress 

the field of photonics even utilizing Low-Computing-Cost computers. The use of 

machine learning models have the potential to greatly increase efficiency and accuracy 

of predicting important parameters in PCFs by improving the design and optimisation of 

PCFs for diverse optical applications. 
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1.0 INTRODUCTION 
Because of their special characteristics, 

Photonic Crystal Fibres (PCFs) have completely 

changed photonics including in the areas of optical 

communication [1] and sensing [2]. For the design and 

optimisation of PCFs, accurate parameter prediction, 

including Bending Loss [3, 4] is essential. The bending 

radius, propagation constants, effective index and mode 

characteristics are important variables that affect bending 

loss [3, 5]. The application of machine learning 

techniques, which leverage historical data and patterns, 

can yield a powerful tool for Bending Loss prediction 

[3]. Recently, there has been a growing interest in 

utilizing machine learning methods in the photonics field 

[3, 6]. Machine learning, a subset of artificial 

intelligence, refers to the development of techniques that 

allow computers to learn from data, make predictions 

based on that data, and do so without explicit 

programming [7-10]. The development of metamaterials 

[11], photonic crystals [12], sensors [13], power splitters 

[14], and multimode fibres [15] are just a few of the 

photonics fields that can benefit from this. The use of 

machine learning models has also improved PCF design 

and optimisation [6, 16, 17]. These models could greatly 

improve the effectiveness and precision of predicting 

crucial factors, including Bending Loss in PCFs [18]. 

When designing and optimising PCFs for different 

optical applications, the prediction of Bending Loss is 

vital. When a Photonic Crystal Fibre is bent, there is an 

attenuation or loss of signal that occurs which is also 

known as bending loss [19, 20]. The guided optical 

mode's interaction with the fibre's structural elements 

and the air-holes would result in this bending loss. Since 

Bending Loss affects the functioning and overall 

performance of PCFs, accurate Bending Loss prediction 

is essential. Macrobending loss [21] in particular has 

been the subject of research due to its effect on the 

bending sensitivity of PCFs. Table 1 shows the bending 

radius, propagation constants, effective index, and mode 

characteristics which all performance a significant part 

in deciding the Bending Loss of PCFs. 
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Table 1: Description of Independent Features 

Feature Description 

Rbend Bending radius 

Br Real part of propagation constant 

Bi Imaginary part of propagation constant 

ne Effective index 

Hx Transverse magnetic mode (TM) 

Hy Transverse electric mode (TE) 

spotsize Spot Size 

 

To forecast Bending Loss in PCFs, a thorough 

comparison examination of numerous low-computing-

cost machine learning models was carried out in this 

study. The study compared the performance of five 

distinct regression algorithms, that is; Gaussian Process 

Regression, Gradient Boosting Regression, Support 

Vector Machine Regression and Random Forest 

Regression. These algorithms were chosen because they 

require less computational power and are suitable for 

locations with limited resources. Finding the best model 

for predicting Bending Loss in PCFs was the main goal 

of this investigation. Standard assessment measures such 

as Mean Squared Error (MSE) [22] and R-squared (R2) 

[23] were used to evaluate each machine learning 

model's performance. The most accurate and trustworthy 

predictor of Bending Loss in PCFs was determined to be 

the Linear Regression model, proving the potential of 

machine learning models to enhance the efficiency and 

accuracy of predicting important parameters in PCFs. 

 

2.0 MACHINE LEARNING MODELS 
2.1. Linear Regression  

For predicting continuous target variables, linear 

regression is a popular machine learning model that is 

easy to understand and apply [24, 25]. It seeks the optimal 

line that minimizes the total squared errors between the 

predicted and observed values, presuming a linear 

relationship between the independent features and the 

target variable. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 ……………… 1 

 

Where y = dependent variable, xi = independent variable, 

i = parameter,  = error 

 

When it comes to predicting Bending Loss in 

PCFs, Linear Regression emerged as the top-notch 

performer in terms of accuracy and dependability. The 

Linear Regression model delivered outstanding results 

with an MSE of 0.0002 and an R2 score of 0.9999, 

underscoring its exceptional precision in forecasting 

Bending Loss, as indicated in Table 2. Linear Regression 

boasts several advantages compared to other machine 

learning models. It's a straightforward and interpretable 

model that can be seamlessly put into action even in 

settings where computing resources are limited. 

Additionally, it offers valuable insights into how the 

independent factors relate to the target variable, enabling 

a deeper grasp of the underlying principles governing the 

system. However, Linear Regression also has its 

limitations, as pointed out in reference [26]. The 

assumption is a linear connection in between the 

independent factors and the objective variable, which 

may not always be the case in real-world scenarios. 

Furthermore, it presupposes that errors follow a normal 

distribution and maintain a consistent variance, which 

may not necessarily align with the real-world conditions 

in all cases [26]. 

 

2.2. Random Forest Regressor 

The Random Forest Regressor, a machine 

learning model, employs multiple decision trees to 

produce predictions [27, 28]. It's a versatile and robust 

model capable of handling both simple and intricate 

connections between the input factors and the objective 

outcome. With the specific task of predicting Bending 

Loss in PCFs, the Random Forest Regressor did not 

perform as accurately as Linear Regression. It yielded an 

MSE of 22029.46 and an R2 score of 0.95, which is less 

than the precision achieved by Linear Regression. 

However, it outperformed the other models assessed in 

this study as can be seen in Table 2. Random Forest 

Regressor brings several advantages compared to some 

other machine learning models. It is adaptable enough to 

manage both linear and nonlinear connections between 

the input variables and the target output, making it a 

versatile choice for various applications [29]. Also, it is 

less prone to overfitting than some other models because 

it combines multiple decision trees for its predictions 

although it did not work so well for us in this particular 

study. Random Forest Regressor also has some certain 

limitations. It can be computationally demanding and 

may require more computational resources than other 

models [30]. Additionally, it is less interpretable due to 

its ensemble nature of combining the insights from 

multiple decision trees to make its predictions [30]. 

 

2.3. Gradient Boosting Regressor 

The Gradient Boosting Regressor is a machine 

learning model that sequentially constructs an ensemble 

of decision trees to make predictions [31, 32]. The 

Gradient Boosting Regressor is a robust and 

versatile machine learning model capable of handling a 

wide range of applications and handling both 

straightforward and complex relationships between the 

input factors and the desired outcome. When it comes to 

predicting Bending Loss in PCFs, the Gradient Boosting 

Regressor was found to be less precise than Linear 

Regression. It achieved an MSE of 8365.56 and an R2 

score of 0.98, which fell short of the accuracy achieved 

by Linear Regression. Nevertheless, it outperformed 

most of the other models assessed in this study, except 

for the Random Forest Regressor, as shown in Table 2. 

The Gradient Boosting Regressor offers numerous 

advantages over alternative machine learning models 

[33]. It's proficient at handling both linear and nonlinear 

connections between the input variables and the 

objective outcome, making it a flexible choice for 

various applications [34]. Furthermore, it's relatively less 

prone to overfitting compared to some other models, 
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thanks to its sequential ensemble approach although it 

did not work as well for us in this particular study. 

Gradient Boosting Regressor does have its limitations 

[35]. It can demand significant computational resources 

and be computationally expensive compared to some 

other low-computing-cost models considered. 

Additionally, it is less straightforward to interpret due to 

its sequential ensemble construction. 

 

2.4. Support Vector Machine Regressor  

The Support Vector Machine (SVM) Regressor, 

a machine learning model, seeks a hyperplane that 

effectively fits the data points [36, 37]. It's a potent and 

adaptable model capable of dealing with both simple and 

intricate connections between the input factors and the 

objective outcome. In the specific context of predicting 

Bending Loss in Photonic Crystal Fibers (PCFs) which 

this study is all about, the SVM Regressor proved to be 

less accurate than both Linear Regression and Gradient 

Boosting Regressor. It achieved an MSE of 26770.52 and 

an R2 score of 0.94, as indicated in Table 2. Nonetheless, 

the SVM Regressor provides a number of benefits 

compared to alternative models for machine learning [38, 

39]. The Support Vector Machine (SVM) Regressor is a 

model that seeks a hyperplane to effectively fit the data, 

capable of handling both linear and nonlinear 

relationships among the input variables and the desired 

output, making it a versatile choice for a wide range of 

applications although it did not work out well for us in 

this study. Additionally, it is relatively less susceptible to 

overfitting, thanks to its focus on finding a hyperplane 

that best suits the data [40]. However, the SVM Regressor 

does have its limitations. It can be computationally 

intensive and may require more computing resources 

compared to some other models which this study is trying 

to minimize [41]. Moreover, it tends to be less intuitive to 

interpret due to its primary goal of discovering the 

optimal hyperplane for the data [41]. The SVM 

Regressor, therefore, stands as a powerful and adaptable 

machine learning model capable of handling both linear 

and nonlinear relationships between variables 

connections between the target and the input features 

outcome [41]. While it may not have been as accurate as 

Linear Regression and Gradient Boosting Regressor in 

predicting Bending Loss in PCFs in this particular study, 

it still holds potential for numerous applications within 

the realms of photonics and optics. 

 

2.5. Gaussian Process Regression 

A novel approach to machine learning is taken 

by the Gaussian Process Regression model by modeling 

the distribution of the target variable [42]. It is a robust 

and adaptable model capable of accommodating both 

linear and nonlinear relationships between the input 

factors and the target outcome [43]. It has also found 

utility in various applications, spanning materials science 

[44], chemistry [45], and battery health estimation [46]. 

Gaussian Process Regression provides a number of 

benefits over alternative machine learning algorithms. It 

excels in modeling the distribution of the target variable, 

which allows it to provide uncertainty estimates for its 

predictions [41]. Additionally, it's a non parametric 

model, that is, it does not assume anything on the 

distribution of the underlying data [47]. However, 

Gaussian Process Regression does come with its own set 

of limitations. It can be computationally demanding [43] 

and may require more computational resources compared 

to some other models and this study is all about 

minimizing that. It also tends to be less straightforward to 

interpret because it focuses on modeling the distribution 

of the target variable rather than providing a simple 

equation [42]. Gaussian Process Regression stands as a 

potent and adaptable machine learning model capable of 

addressing both linear and nonlinear relationships 

between input characteristics and the intended outcome 

[42].  

 

To put it briefly, this study underscores how 

machine learning models hold great promise in predicting 

Bending Loss in PCFs. The findings from this research 

offer valuable insights that can be harnessed to improve 

PCF design and optimisation for various optical 

applications. By leveraging the low-computing-cost 

machine learning models, we can markedly boost the 

precision and efficiency of forecasting crucial parameters 

in PCFs, ultimately driving advancements in the field of 

photonics. As can be deduced from the discussions, 

Linear Regression stands out as a low-computing-cost 

and formidable tool for forecasting continuous target 

variables, such as Bending Loss in PCFs. Its simplicity 

and interpretability would make it a well-liked option for 

many applications, such as photonics and optics. 

 

3.0 METHODOLOGY 
The bending loss data and the other associated 

parameters of the bent PCF were obtained using the 

modal solution approach based on the Finite Element 

Method (FEM) [48]. The PCF has 3 ring air-holes in the 

TE mode with a pitch of 2.6 m a wavelength of 1.55 m 

and a silica refractive index of 1.445 and the bending 

radius was varied from of 10000 to 230 m. In the FEM, 

the elaborate cross-sectional area of the PCF including the 

core is broken down and represented into various 

triangular shapes and sizes [49]. This approach is much 

more robust and flexible contrasted with the Finite 

Difference Method (FDM) that utilizes inefficiently 

regularly spaced and also does not represent curved and 

slanted dielectric surfaces well hence, the FEM is 

preferable. Due to the high index contrast PCF, the two-

dimensional optical modes in the confinement are also 

hybrid in nature, with all six components of the E and H 

fields being present. Moreover, confinement is hybrid in 

character, containing all six elements of the E and H 

fields. Moreover, the inclusion of inclined or curved 

dielectric interfaces enhances modal hybridity. Therefore, 

an appropriate depiction of these interfaces is as crucial 

as a vectorial formulation for precisely calculating their 

modal solutions. The current method analyses the 

performance of PCFs with air holes placed in a triangular 
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lattice in the silica cladding using an H-field-based 

rigorous full vectorial FEM [49]. A viable method for 

microwave and optical guided-wave devices, covering 

the intermediate THz frequency range, is the previously 

developed H-field formulation. The following is the H-

field formulation using the increased penalty function 

technique: 

𝜔2 =
(∫(∇×�⃗⃗� )∗∙�̂�−1(∇×�⃗⃗� )𝑑Ω)+(∫(𝛼 𝜀𝑜⁄ )(∇∙�⃗⃗� )∗(∇∙�⃗⃗� )𝑑Ω

∫ �⃗⃗� ∗∙�̂��⃗⃗� 𝑑Ω
 ……. 2 

 

Where �⃗⃗⃗�  denotes the comprehensive vector 

description of the intricate magnetic field [50]; 𝜺 and 𝝁 

refer to the permittivity and permeability of the 

waveguide, respectively [50]; 𝜺𝒐 refers to the permittivity 

of the vacuum [50]; 𝝎𝟐 is the eigenvalue (where 𝝎 is the 

angular frequency of the wave) [50]; and 𝜶 is a unitless 

factor employed to enforce the divergence-free condition 

of the magnetic field in a manner that minimizes errors 

through least squares [50]. In this formulation, both the �̂� 

and �̂� parameters can be arbitrary complex tensors with 

possible off diagonal coefficients, suitable to characterize 

electro-optic, acousto-optic, and elasto-optic devices 

[50]. Perfectly Matched Layers (PMLs) were added 

around the computational window since we also required 

to compute the leakage and bending losses in the bent 

PCF. This resulted in a complex eigenvalue equation for 

the final formulation [49]. The dataset obtained and used 

in this study, which is referred to as the "Bending Loss 

Dataset" consists of 25 samples and 8 features. The target 

variable is the "Bending Loss" representing the amount of 

optical loss induced by bending the PCF. The 

independent features include: Bending radius (Rbend), 

Real part of propagation constant (Br), Imaginary part of 

propagation constant (Bi), Effective index (ne), 

Transverse magnetic mode (TM) component (Hx), 

Transverse electric mode (TE) component (Hy), Spot 

Size (spotsize) as can been seen in Figure 2.  

 

 
Figure 1: Schematic depiction of the cross-section of 3 ring air-holes PCF 

 

Figure 1 depicts the cross-sectional area of the 

Photonic Crystal Fiber (PCF) having 3 rings of air-holes 

around the silica core. The pitch length () is 2.6m, the 

diameter to pitch ratio (d/) is 0.5 and the diameter (d) is 

1.3m. The wavelength () of operation is 1.55m 

refractive index (n) of the silica material of the PCF is 

1.445 and that of air is 1.000. The calculations were 

carried out for the Transverse Electric (TE) mode. 
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Figure 2: Half-structure field profile for Rbend = 10000m, the half structure field contour of the 3 ring air-holes 

PCF in the TE mode PCF, Pitch = 2.6m, d = 1.3m, d by pitch = 0.5,  = 1.55m, silica of n = 1.445 

 

Figure 2 shows the half structure field contour 

of the 3 ring air-holes PCF with Rbend of 10000m in the 

TE mode, with a pitch of 2.6 m a wavelength of 1.55 m 

and a silica refractive index of 1.445. It is assumed that 

the PCF is straight and not bent and this high value of 

bending radius and that is depicted in contours of the field 

profile. 

 

 
Figure 3: Half-structure field profile for Rbend = 300m, the half structure field contour of the 3 ring air-holes 

PCF in the TE mode PCF, Pitch = 2.6m, d = 1.3m, d by pitch = 0.5,  = 1.55m, silica of n = 1.445 
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The half structure field contour of the 3 ring air-

holes PCF with Rbend of 300m in the TE mode for is 

shown in Figure 3, with a pitch of 2.6 m a wavelength 

of 1.55 m and a silica refractive index. It is observed that 

the PCF is significantly bent at this low value of bending 

radius and that is depicted in contours of the field profile 

as it leaks more into the cladding region. 
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Figure 4: Plot of Bending Loss against bending Radius (Rbend) for a pitch length of 2.6m, Transverse Electric 

(TE) mode 

 

Figure 4 in the study displays a graph illustrating 

the relationship between Bending Loss and bending 

radius (Rbend) for a pitch length of 2.6m, specifically in 

the Transverse Electric (TE) mode. This graph represents 

a portion of the data that was utilized in our low-cost 

machine learning algorithms. The methodology 

employed in our research consisted of several key steps. 

Initially, we performed Data Preprocessing, which 

involved preparing the dataset used in our study. This 

dataset comprised 25 samples and 8 features. During 

preprocessing, we addressed missing values, standardized 

the features, and separated the dataset using an 80/20 split 

into training and testing sets. Following data 

preprocessing, we moved on to Model Training. In this 

phase, we selected and implemented five different 

regression algorithms aimed at predicting Bending Loss 

within the Bending Loss dataset. These algorithms 

encompassed Linear Regression, Random Forest 

Regressor, Gradient Boosting Regressor, Support Vector 

Machine Regressor and Gaussian Process Regression. 

Each algorithm was trained using the designated training 

dataset. The subsequent step was Model Evaluation. We 

evaluated the performance of these models using the 

testing dataset and recorded pertinent performance 

metrics, such as Mean Squared Error (MSE) and R-

squared (R2). These metrics allowed us to gauge the 

accuracy and reliability of each machine learning model. 

Lastly, Model Selection was performed. Based on the 

outcomes of our comparative analysis, we identified the 

Linear Regression model as the most precise and 

dependable predictor of Bending Loss in PCFs. 

 

To summarize, our research methodology 

encompass preprocessing the dataset, training and 

evaluating five distinct regression algorithms, and 

ultimately selecting the Linear Regression model as the 

most accurate and reliable choice for predicting Bending 

Loss in PCFs. 

 

4.0 DISCUSSION 
The results of this research demonstrate the 

possibility of low-computing-cost machine learning 

models in predicting Bending Loss in PCFs. The Linear 

Regression model was found to be the most accurate and 

reliable predictor of Bending Loss in PCFs, 

demonstrating the potential of machine learning models 

to enhance the efficiency and accuracy of predicting 

important parameters in PCFs. The use of machine 

learning models can significantly improve the design and 

optimization of PCFs for various optical applications. 
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Table 2: Performance Metrics of Machine Learning Models 

Model Mean Squared Error (MSE) R-squared (R2) 

Linear Regression 0.0002 1.00 

Random Forest Regressor 22029.46 0.95 

Gradient Boosting Regressor 8365.56 0.98 

SVM Regressor 26770.52 0.94 

Gaussian Process Regression 0.00 1.00 

 

The Linear Regression model achieved an MSE 

of 0.0002 and an R2 score of 0.9999, while the other 

models achieved higher MSE and lower R2 scores. The 

ability of the Linear Regression model to capture the 

linear connection between the independent 

characteristics and the target variable accounts for its 

higher performance. The linear regression model is an 

easy-to-implement, straightforward, and interpretable 

model that works well in contexts with limited resources. 

 

The results of this study are consistent with 

previous studies that have demonstrated the potential of 

machine learning models in predicting important 

parameters in PCFs. The use of machine learning models 

have the potential to greatly improve accuracy and 

efficiency of predicting important parameters in PCFs, 

leading to advancements in the field of photonics. The 

Bending Loss Dataset used in this study consists of 25 

samples and 8 features. The preprocessed dataset was 

divided into training and test sets, with missing values 

handled and features normalised and testing sets using an 

80/20 split. The testing set was employed to evaluate the 

performance of the machine learning models following 

their training using the training set. The results of this 

study can be used to improve the design and optimization 

of PCFs for various optical applications. The use of 

machine learning models can greatly improve the 

accuracy and efficiency of predicting important 

parameters in PCFs, leading to advancements in the field 

of photonics as can be seen in Table 2. 

 

5.0 CONCLUSIONS 
In this study, we delved into the exciting 

potential of low-computing-cost machine learning 

models for predicting Bending Loss in PCFs. Using the 

Finite Element Method (FEM)-based modal solution 

approach, the PCF has 3 ring air-holes in the Transverse 

Electric (TE) mode with a pitch length () of 2.6m and 

a wavelength () of 1.55 m and a silica refractive index 

(n) of 1.445 and the bending radius was varied from of 

10000 to 230 m and the analysis of the Bending Loss 

Dataset. Five distinct regression algorithms were 

rigorously evaluated, namely Linear Regression, 

Random Forest Regressor, Gradient Boosting Regressor, 

Support Vector Machine Regressor and Gaussian 

Process Regression using the Bending Loss Dataset. 

Importantly, we chose algorithms suitable for situations 

with limited computational resources. The standout 

performer among these models was the Linear 

Regression model, which proved to be the most accurate 

and dependable predictor of Bending Loss in PCFs. It 

achieved remarkably low values for both Mean Squared 

Error (MSE) at 0.0002 and an impressively high R-

squared (R2) score of 0.9999. These findings highlight 

the immense potential of machine learning models in 

predicting vital parameters within PCFs, paving the way 

for notable advancements in the field of photonics. The 

application of these models can significantly enhance the 

precision and efficiency of predicting crucial PCF 

parameters, ultimately contributing to the optimization 

and design of PCFs for various optical applications. The 

integration of machine learning models promises to 

revolutionize the design and optimization of PCFs for 

various optical applications, enhancing their 

performance and reliability. 

 

In future studies, we hope to further explore the 

use of more intricate machine learning models and larger 

datasets to elevate the accuracy of predicting essential 

parameters in PCFs. The knowledge gained from this 

study can be used to continue to inform the refinement 

and optimization of PCFs for other diverse optical 

applications, thus driving further progress in the realm of 

photonics. 
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